Microcanonical transition state theory for activated gas-surface reaction dynamics: application to H2/CU(111) with rotation as a spectator.
نویسندگان
چکیده
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.
منابع مشابه
Seven-dimensional microcanonical treatment of hydrogen dissociation dynamics on Cu(111): clarifying the essential role of surface phonons.
A simple picture of the hydrogen dissociation/associative desorption dynamics on Cu(111) emerges from a two-parameter, full dimensionality microcanonical unimolecular rate theory (MURT) model of the gas-surface reactivity. Vibrational frequencies for the reactive transition state were taken from density functional theory calculations of a six-dimensional potential energy surface [Hammer et al.,...
متن کاملRotational effects in six-dimensional quantum dynamics for reaction of H2 on Cu„100..
We present results of six-dimensional ~6D! quantum wave-packet calculations for the dissociative adsorption of (n50,j54,m j) H2 on Cu~100!. The potential-energy surface is a fit to points calculated using density-functional theory ~DFT!, with the generalized gradient approximation ~GGA!, and a slab representation for the surface. New aspects of the methodology we use to adapt the wave function ...
متن کاملThe effect of the exchange-correlation functional on H2 dissociation on Ru(0001).
The specific reaction parameter (SRP) approach to density functional theory (DFT) has enabled a chemically accurate description of reactive scattering experiments for activated H2-metal systems (H2 + Cu(111) and Cu(100)), but its application has not yet resulted in a similarly accurate description of non-activated or weakly activated H2-metal systems. In this study, the effect of the choice of ...
متن کاملDynamical Quantum Processes of Molecular Beams at Surfaces: Dissociative Adsorption of Hydrogen on Metal Surfaces
Due to the improvement of computer power and the development of efficient algorithms it is now possible to combine high-dimensional quantum dynamical calculations of the dissociative adsorption of molecular beams with reliable ab-initio potential energy surfaces (PES). In this brief review two recent examples of such studies of the systems H2/Cu(111), where adsorption is hindered by a noticeabl...
متن کاملEffusive molecular beam study of C2H6 dissociation on Pt(111).
The dissociative sticking coefficient for C2H6 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. A microcanonical unimolecular rate theory (MURT) model of the reactive system is used to extract transition state properties from the data as well as to compare our data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 39 شماره
صفحات -
تاریخ انتشار 2007